Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cannabis Cannabinoid Res ; 7(4): 548-556, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34142864

RESUMEN

Background: Cannabis plants and their seed have been used in many cultures as a source of medicine and feeding during history. Today, there is an increasing demand for cannabis seeds for medical use. Moreover, a seed sales market with no legal regulations has also grown. This may pose some issues if a quality control is not set in place. Identification of cannabis strains is important for quality control purposes in a nonregulated growing market and in cases of illegal traffic and medical use. Owing to the high price as a pharmacological drug, commercial products of cannabis plants and seeds for medical users are often subjected to adulterations, either when packing or distributing certified seeds in the market. Materials and Methods: Cannabis commercial seeds and cannabis seeds for medical use were analyzed with high-resolution melting (HRM) analysis using barcoding markers. Humulus lupulus L. plants from a local market were used as outgroup control. DNA barcoding uses specific regions of the genome to identify differences in the genetic sequence of conserved regions such as internal transcribed spacer (ITS) and rbcL. DNA barcoding data can be generated with real-time polymerase chain reaction combined with HRM analysis to distinguish specific conserved DNA regions of closely related species. HRM analysis is the method of choice for rapid analysis of sequence variation. Results: The melting temperature (Tm) of homogeneous packages was consistent with single genotypes. However, packages containing contaminating seeds showed Tm differences of 0.2°C on average. Conclusions: An effective, rapid, and low-cost method based on ITS nuclear DNA and on chloroplast rbcL regions for screening and detection of contamination in commercial cannabis seeds was developed and applied for the analysis of different samples. This approach can be used as a quality control tool for cannabis seeds or other plant material.


Asunto(s)
Cannabis , Código de Barras del ADN Taxonómico , Cannabis/genética , Cloroplastos/genética , Código de Barras del ADN Taxonómico/métodos , ADN Intergénico , ADN de Plantas/genética , Control de Calidad , Semillas/genética
2.
Forensic Sci Int ; 316: 110550, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33128928

RESUMEN

Cannabis sativa L. is a plant cultivated worldwide as a source of fiber, medicine, and intoxicant. Traditionally, C. sativa is divided into two main types: fiber type (hemp) and drug type. Drug-type C. sativa differs from hemp by the presence of a high quantity of the psychoactive drug, Δ9-tetrahydrocannabinol (Δ9 THC). Cannabis sativa is the most commonly used used illicit controlled substance in Chile. Chile is the third greatest consumer of Cannabis in South America. The objective of this study was to determine the genetic composition of ten drug seizures of Cannabis spp. in the south of Chile using a high resolution melting (HRM) strategy combined with a barcoding marker, ITS. C. sativa samples were selected from previously processed more than a thousand crime cases at the, Araucania region crime lab, National Dept. of Health. Ten cases were selected. Sample collection was based on the following: a) dry and fresh samples with no evidence of decomposition or degradation, b) defined plant fragments such as flowers and leaves from individual plants and, c) samples with different content of THC, CBN and CBD. Five sub samples were randomly selected from each case (N=50). The commercial Silver Haze strain was used as a control. Two real-time PCR and HRM analyses were conducted. The first analysis was performed with a representative sample of each of the 10 cases studied. Then a second assay was performed with all subsamples of cases 1, 5 and 8. Results showed that real-time PCR combined with HRM analysis using ITS allowed to determine the genetic composition of cannabis in all cases studied. The derivative of melting and the analysis of the shape of the curve and the peak of Tm, showed that three groups can be clearly distinguished. A first group exhibited a peak of Tm close to 87.4°C and includes cases 7 and 8. A second group had a peak of Tm close to 87.6°C and includes case 5. A third group displayed a peak of Tm close to 87.9°C and includes case 1, 6 and Silver Haze strain. A second experiment was performed using subsamples of cases 1, 5 and 8. Case 1 displayed a unique composition of the drug suggesting that this seizure contained cannabis clonally propagated. In case 5, two genotypes were present, therefore this could be associated with two strain or two different origin. Case 8, was composed of a mixture of cannabis strains indicating the presence of various crop type and/or different biogeographic origin. In general, our results suggested genetically homogeneous seizures from Araucanía Region. The high latitude (37° 35' and 39° 37' South latitude) and the natural geographic borders that surround southern Chile helps the control of cannabis traffic into the country. Finally, HRM analysis coupled with the barcode ITS demonstrated to be a rapid and low-cost screening method.


Asunto(s)
Cannabis/genética , Código de Barras del ADN Taxonómico , ADN Intergénico/genética , Chile , ADN de Plantas/genética , Tráfico de Drogas , Genética Forense/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura de Transición
3.
Sci Justice ; 60(6): 487-494, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33077031

RESUMEN

Eucalyptus is grown world-wide for paper pulp, solid wood, and other industries. Theft or illegal cutting of the trees causes hardship to owners of plantations and countries whose economies rely on the sale and export of eucalyptus products. Unfortunately, many of these crimes go unpunished due to lack of forensic evidence. Over 1200 short tandem repeat (STR) markers have been identified in the genomes of genus Eucalyptus and related species. However, their importance and utility in aiding forensic investigations of wood theft have not been explored. This study evaluated nine STRs for diversity and applied them to a case involving suspected wood theft. As expected, three dinucleotide STR markers showed greater variability but resulted in harder to interpret profiles. Four STR tetranucleotide markers evaluated in this study were found to contain additional repeat structures (dinucleotide or trinucleotide) that enhanced their variability but resulted in profiles with peaks at multiple stutter positions and heterozygote peak imbalance. The most promising STR markers were EGM37 and EMBRA 1374. Though less variable, they yielded robust and reproducible DNA profiles. All nine STR markers were applied to a case involving suspected wood theft. Samples were collected from seized wood and from remaining stumps in a plantation. No DNA match was found, thus eliminating the evidence samples as having originated from the forest. Dendrochronology analysis also resulted in an exclusion. This case study represents the first report using STR markers in any eucalyptus species to provide DNA evidence in a case of suspected wood theft.


Asunto(s)
Eucalyptus , ADN/genética , Dermatoglifia del ADN/métodos , Eucalyptus/genética , Humanos , Repeticiones de Microsatélite
4.
Sci Justice ; 60(3): 253-262, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32381242

RESUMEN

Papaver somniferum, commonly known as opium poppy, is the source of natural opiates, which are used as analgesics or as precursors in the creation of semi-synthetic opioids such as heroin. An increase in opioid addiction in the United States has resulted in high rates of illicit opioid use and overdoses. It has recently been shown that P. somniferum DNA suitable for genetic analysis can be recovered from heroin samples. The development of a comprehensive genetic individualization tool for opium poppy could serve to link cases and strengthen programs such as the Drug Enforcement Administration's (DEA) Heroin Signature Program, which seeks to combat rising opioid use. The purpose of this study was to develop a quantitative real-time PCR (qPCR) method for the quantification of opium poppy DNA, compare three commercial DNA extraction kits for their ability to isolate DNA from poppy seeds, and evaluate nineteen opium poppy short tandem repeat (STR) markers for their use in a forensic identification panel. Such a panel could be used for individualizing samples and determining the geographic origin in heroin or poppy seed tea cases. The qPCR method was proven to be reproducible and reliable, specific for P. somniferum, and sensitive enough for forensic case-type samples. Of the three kits tested, the nexttec™ one-step DNA Isolation Kit for Plants was the optimal method and facilitated rapid extraction of DNA from poppy seeds. The majority of evaluated STR primer sets were unreliable or had low discriminatory power, limiting their use for individualization of poppy samples. A six-locus STR multiplex was developed and evaluated according to Scientific Working Group on DNA Analysis Methods (SWGDAM) and International Society of Forensic Genetics (ISFG) guidelines, including the use of a sequenced allelic ladder. The multiplex was found to have low discriminatory power, with greater than two-thirds of samples analyzed having just two different genotypes. The multiplex was determined to be unsuitable for individualization; however, a genotype map was developed as a proof of concept that these markers may be useful for determining the biogeographical origin of samples. Searching the poppy genome for new STR markers and developing new primer sets may be necessary for the creation of a powerful genetic tool for the individualization of P. somniferum.


Asunto(s)
Repeticiones de Microsatélite , Papaver , Alelos , Analgésicos Opioides , Biomarcadores , Heroína , Papaver/genética
5.
Int J Legal Med ; 133(6): 1721-1732, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31444552

RESUMEN

Marijuana (Cannabis sativa) is the most commonly used illicit drug in the USA. Despite its schedule I classification by the federal government, 33 states and the District of Columbia have legalized its use for medicinal or recreational purposes. This state-specific legalization has created a new problem for law enforcement: preventing and tracking the diversion of legally obtained Cannabis to states where it remains illegal. In addition, trafficking of the drug at the border with Mexico remains an issue for law enforcement agencies. C. sativa crops can be classified as marijuana (a drug containing the psychoactive chemical delta-9-tetrahydrocannabinol) or hemp (the non-drug form of the plant). Differentiation between crop types is important for forensic purposes. In addition, investigation of trafficking routes into and within the USA requires genetic association of samples from different seizures, and determining where the crop originated could provide important leads. This project seeks to exploit sequence variations in C. sativa chloroplast DNA (cpDNA) to allow genetic determination of biogeographic origin, discrimination between marijuana and hemp, and association between cases for C. sativa samples. Due to the limited discriminatory ability of common barcoding markers, the authors sought to discover more informative polymorphic regions. By comparing published whole genome cpDNA sequences, 58 polymorphisms and seven hotspot regions were identified. Hemp samples from the USA and Canada, marijuana samples from Mexico and Chile, and medical marijuana samples from Chile were evaluated using two cpDNA hotspot regions, rpl32-trnL and trnS-trnG. Principal component analysis supported some differences between the groups based on their crop type and biogeographic origin.


Asunto(s)
Cannabis/genética , ADN de Cloroplastos/genética , Variación Genética , Análisis de Secuencia de ADN , Bases de Datos Genéticas , Tráfico de Drogas , Genoma de Planta , Genotipo , Haplotipos , Humanos , Filogeografía , Análisis de Componente Principal
6.
Sci Justice ; 59(1): 102-108, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30654963

RESUMEN

In nature, there are >200 species of fungi with hallucinogenic properties. These fungi are classified as Psilocybe, Gymnopilus, and Panaeolus which contain active principles with hallucinogenic properties such as ibotenic acid, psilocybin, psilocin, or baeocystin. In Chile, fungi seizures are mainly of mature specimens or spores. However, clandestine laboratories have been found that process fungus samples at the mycelium stage. In this transient stage of growth (mycelium), traditional taxonomic identification is not feasible, making it necessary to develop a new method of study. Currently, DNA analysis is the only reliable method that can be used as an identification tool for the purposes of supporting evidence, due to the high variability of DNA between species. One way to identify the species of a distinctive DNA fragment is to study PCR products analyzed by real time PCR and sequencing. One of the most popular sequencing methods of forensic interest at the generic and intra-generic levels in plants is internal transcribed spacer (ITS). With real time PCR it is possible to distinguish PCR products by differential analysis of their melting temperature (Tm) curves. This paper describes morphological, chemical, and genetic analysis of mycelia of psychedelic fungi collected from a clandestine laboratory. The fungus species were identified using scanning electron microscopy (SEM), mass spectrometry, HRM analysis, and ITS sequencing. The sporological studies showed a generally smooth surface and oval shape, with maximum length 10.1 µm and width 6.4 µm. The alkaloid Psilocyn was identified by mass spectrometry, while HRM analysis and ITS sequencing identified the species as Psilocybe cubensis. A genetic match was confirmed between the HRM curves obtained from the mycelia (evidence) and biological tissue extracted from the fruiting bodies. Mycelia recovered from the evidence and fruiting bodies (control) were genetically indistinguishable.


Asunto(s)
Alucinógenos/análisis , Micelio/genética , Psilocybe/clasificación , Psilocibina/análogos & derivados , Chile , ADN de Hongos/análisis , Tráfico de Drogas , Genética Forense , Cromatografía de Gases y Espectrometría de Masas , Microscopía Electrónica de Rastreo , Psilocibina/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Esporas/genética
7.
Int J Legal Med ; 133(3): 745-750, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29845343

RESUMEN

When samples with low amounts of DNA are amplified using short tandem repeats (STRs), stochastic effects such as allele and locus dropout or drop-in, allele imbalance, and increased stutter often occur making data interpretation more difficult. The most common approach to improving STR results from low template samples is to increase the number of PCR cycles. Although more alleles may be recovered, stochastic effects may be exaggerated resulting in more complicated STR profiles. This work reports the effect of additional PCR cycles (29 vs. 30, 31, and 32) on STR success from environmentally challenged bone and tooth samples using the GlobalFiler® DNA Amplification Kit (Thermo Fisher Scientific). In addition, we compared the efficiency of two DNA extraction kits for skeletal samples: QIAamp® DNA Investigator (QIAGEN) and PrepFiler® BTA™ Forensic DNA Extraction (Thermo Fisher Scientific) kits. Results showed that more DNA was recovered from samples using the PrepFiler® BTA™ kit; but regardless of the extraction method, the number of alleles detected and the peak heights both increased with an increase in PCR cycle number. Although more alleles were reported in almost all samples, the most notable improvement was observed in samples with the DNA template < 120 pg. A general increase in the number of PCR artifacts was detected in STR profiles generated using 30-32 cycles. Overall, this study provides supporting evidence that STR profile completeness and quality may be improved when low template skeletal samples are amplified with extra PCR cycles (up to 32 cycles) using the GlobalFiler® DNA Amplification Kit.


Asunto(s)
Huesos/química , Dermatoglifia del ADN/instrumentación , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa/métodos , Diente/química , Alelos , Artefactos , ADN/aislamiento & purificación , Humanos
8.
Int J Legal Med ; 133(1): 51-58, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30341454

RESUMEN

Skeletal remains recovered from missing persons' cases are often exposed to harsh environmental conditions resulting in the DNA being damaged, degraded, and/or the samples containing PCR inhibitors. In this study, the efficacy of common extraction methods was evaluated to remove high levels of PCR inhibitors commonly encountered with human remains, and their downstream compatibility with the two leading sequencing chemistries and platforms for human identification purposes. Blood, hair, and bone samples were spiked with high levels of inhibitors commonly identified in each particular substrate in order to test the efficiency of various DNA extraction methods prior to sequencing. Samples were extracted using three commercial extraction kits (DNA IQ™, DNA Investigator, and PrepFiler® BTA), organic (blood and hair only), and two total demineralization protocols (bone only)). Massively parallel sequencing (MPS) was performed using two different systems: Precision ID chemistry and a custom AmpliSeq™ STR and iiSNP panel on the Ion S5™ System and the ForenSeq DNA Signature Prep Kit on the MiSeq FGx™. The overall results showed that all DNA extraction methods were efficient and are fully compatible with both MPS systems. Key performance indicators such as STR and SNP reportable alleles, read depth, and heterozygote balance were comparable for each extraction method. In samples where CE-based STRs yielded partial profiles (bone), MPS-based STRs generated more complete or full profiles. Moreover, MPS panels contain more STR loci than current CE-based STR kits and also include SNPs, which can further increase the power of discrimination obtained from these samples, making MPS a desirable choice for the forensic analysis of such challenging samples.


Asunto(s)
Dermatoglifia del ADN , ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Análisis de Secuencia de ADN , Análisis Químico de la Sangre , Restos Mortales , Huesos/química , Electroforesis Capilar , Genotipo , Cabello/química , Humanos , Polimorfismo de Nucleótido Simple
9.
Electrophoresis ; 39(22): 2906-2911, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30221375

RESUMEN

Massively parallel sequencing (MPS) is an emerging technology in the field of forensic genetics that provides distinct advantages compared to capillary electrophoresis. This study offers a proof of concept that MPS technologies can be applied to genotype autosomal STRs in Cannabis sativa. A custom panel for MPS was designed to interrogate 12 cannabis-specific STR loci by sequence rather than size. A simple workflow was implemented to integrate the custom PCR multiplex into a workflow compatible with the Ion Plus Fragment Library Kit, Ion™ Chef, and Ion™ S5 System. For data sorting and sequence analysis, a custom configuration file was designed for STRait Razor v3 to parse and extract STR sequence data. This study represents a preliminary investigation of sequence variation for 12 autosomal STR loci in 16 cannabis samples. Full concordance was observed between the MPS and CE data. Results revealed intra-repeat variation in eight loci where the nominal or size-based allele was identical, but variances were discovered in the sequence of the flanking region. Although only a small number of cannabis samples were evaluated, this study demonstrates that more informative STR data can be obtained via MPS.


Asunto(s)
Cannabis/genética , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite/genética , ADN de Plantas/análisis , Ciencias Forenses/métodos , Reacción en Cadena de la Polimerasa Multiplex
10.
Psychiatr Q ; 89(4): 841-853, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29730831

RESUMEN

With the advent of new and more readily usable gene sequencing techniques, researchers have been able to examine the interactions between genes and the environment (G X E) within a multitude of scientific perspectives. One area that G X E interactions have been implicated in is the development of antisocial behavior (ASB). Antisocial behavior consists of a wide range of maladaptive behaviors and has been at the forefront of public health and mental health concerns for decades. One genetic polymorphism that has been associated with ASB is MAOA-uVNTR. Meta-analytic studies have found the low-activity MAOA-uVNTR polymorphism to be associated with ASB from early childhood through adulthood. Recently, studies have begun to examine the independent and interactive G X E relationship between MAOA-uVNTR and deviant peer affiliation on ASB. Inconsistent with the broader literature, these findings suggest an interaction between high-activity MAOA-uVNTR and deviant peer affiliation on ASB in a mixed sex sample. The current study re-examines the relationship between MAOA-uVNTR, peer delinquency, and ASB with a consideration of sex differences in 291 college participants. Findings indicate an interaction between the low-activity allele of the MAOA-uVNTR and peer delinquency in predicting ASB. Results are also specific to differences between the sexes. Implications and future research are discussed.


Asunto(s)
Interacción Gen-Ambiente , Delincuencia Juvenil , Monoaminooxidasa/genética , Grupo Paritario , Caracteres Sexuales , Conducta Social , Adulto , Femenino , Humanos , Masculino , Repeticiones de Minisatélite , Adulto Joven
11.
Int J Legal Med ; 132(3): 727, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532148

RESUMEN

The original version of this article contained a mistake. In page 10 of the original article, the significant level (p > 0.01) is incorrect. The correct significant level is (p < 0.01). The original article has been corrected.

12.
Int J Legal Med ; 132(3): 713-725, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29464313

RESUMEN

As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.


Asunto(s)
Cannabis/genética , Núcleo Celular/genética , Cloroplastos/genética , Dermatoglifia del ADN , ADN Mitocondrial , Bases de Datos de Ácidos Nucleicos , Tráfico de Drogas , Genotipo , Haplotipos , Humanos , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido Simple
13.
J Forensic Sci ; 63(6): 1819-1823, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29411392

RESUMEN

Bones are often recovered in forensic investigations, including missing persons and mass disasters. While traditional DNA extraction methods rely on grinding bone into powder prior to DNA purification, the TBone Ex buffer (DNA Chip Research Inc.) digests bone chips without powdering. In this study, six bones were extracted using the TBone Ex kit in conjunction with the PrepFiler® BTA™ DNA extraction kit (Thermo Fisher Scientific) both manually and via an automated platform. Comparable amounts of DNA were recovered from a 50 mg bone chip using the TBone Ex kit and 50 mg of powdered bone with the PrepFiler® BTA™ kit. However, automated DNA purification decreased DNA yield (p < 0.05). Nevertheless, short tandem repeat (STR) success was comparable across all methods tested. This study demonstrates that digestion of whole bone fragments is an efficient alternative to powdering bones for DNA extraction without compromising downstream STR profile quality.


Asunto(s)
Huesos/química , Dermatoglifia del ADN/métodos , ADN/aislamiento & purificación , Repeticiones de Microsatélite , Restos Mortales , Técnica de Desmineralización de Huesos/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Int J Legal Med ; 132(3): 691-701, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29177703

RESUMEN

DNA quantification is a vital step in forensic DNA analysis to determine the optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction (qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior to DNA amplification could aid forensic laboratories in creating a more streamlined and efficient workflow. This study compares the results from four commercial qPCR kits: (1) Investigator® Quantiplex® Pro Kit, (2) Quantifiler® Trio DNA Quantification Kit, (3) PowerQuant® System, and (4) InnoQuant® HY with high molecular weight DNA, low template samples, degraded samples, and DNA spiked with various inhibitors.The results of this study indicate that all kits were comparable in accurately predicting quantities of high quality DNA down to the sub-picogram level. However, the InnoQuant(R) HY kit showed the highest precision across the DNA concentration range tested in this study. In addition, all kits performed similarly with low concentrations of forensically relevant PCR inhibitors. However, in general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to inhibitors and provided the most accurate quantification results with higher concentrations of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying degraded samples, each kit provided different degradation indices (DI), with Investigator® Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI. When the qPCR kits were paired with their respective STR kit to genotype highly degraded samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete profiles when the small target concentrations were used for calculating input amount.


Asunto(s)
Degradación Necrótica del ADN , Dermatoglifia del ADN , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , ADN/análisis , Humanos , Repeticiones de Microsatélite
15.
Leg Med (Tokyo) ; 26: 33-40, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28549545

RESUMEN

Marijuana (Cannabis sativa L.) is a plant cultivated and trafficked worldwide as a source of fiber (hemp), medicine, and intoxicant. The development of a validated method using molecular techniques such as short tandem repeats (STRs) could serve as an intelligence tool to link multiple cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13 loci STR multiplex method was developed, optimized, and validated according to relevant ISFG and SWGDAM guidelines. The STR multiplex consists of 13 previously described C. sativa STR loci: ANUCS501, 9269, 4910, 5159, ANUCS305, 9043, B05, 1528, 3735, CS1, D02, C11, and H06. A sequenced allelic ladder consisting of 56 alleles was designed to accurately genotype 101 C. sativa samples from three seizures provided by a U.S. Customs and Border Protection crime lab. Using an optimal range of DNA (0.5-1.0ng), validation studies revealed well-balanced electropherograms (inter-locus balance range: 0.500-1.296), relatively balanced heterozygous peaks (mean peak height ratio of 0.83 across all loci) with minimal artifacts and stutter ratio (mean stutter of 0.021 across all loci). This multi-locus system is relatively sensitive (0.13ng of template DNA) with a combined power of discrimination of 1 in 55 million. The 13 STR panel was found to be species specific for C. sativa; however, non-specific peaks were produced with Humulus lupulus. The results of this research demonstrate the robustness and applicability of this 13 loci STR system for forensic DNA profiling of marijuana samples.


Asunto(s)
Cannabis/genética , Genética Forense , Repeticiones de Microsatélite , Frecuencia de los Genes , Humanos , Especificidad de la Especie
16.
Forensic Sci Int Genet ; 28: 195-202, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28292727

RESUMEN

Improvised explosive devices (IEDs) such as pipe bombs are weapons used to detrimentally affect people and communities. A readily accessible brand of exploding targets called Tannerite® has been identified as a potential material for abuse as an explosive in pipe bombs. The ability to recover and genotype DNA from such weapons may be vital in the effort to identify suspects associated with these devices. While it is possible to recover DNA from post-blast fragments using short tandem repeat markers (STRs), genotyping success can be negatively affected by low quantities of DNA, degradation, and/or PCR inhibitors. Alternative markers such as insertion/null (INNULs) and single nucleotide polymorphisms (SNPs) are bi-allelic genetic markers that are shorter genomic targets than STRs for amplification, which are more likely to resist degradation. In this study, we constructed pipe bombs that were spiked with known amounts of biological material to: 1) recover "touch" DNA from the surface of the device, and 2) recover traces of blood from the ends of wires (simulated finger prick). The bombs were detonated with the binary explosive Tannerite® using double-base smokeless powder to initiate the reaction. DNA extracted from the post-blast fragments was quantified with the Quantifiler® Trio DNA Quantification Kit. STR analysis was conducted using the GlobalFiler® Amplification Kit, INNULs were amplified using an early-access version of the InnoTyper™ 21 Kit, and SNP analysis via massively parallel sequencing (MPS) was performed using the HID-Ion Ampliseq™ Identity and Ancestry panels using the Ion Chef and Ion PGM sequencing system. The results of this study showed that INNUL markers resulted in the most complete genetic profiles when compared to STR and SNP profiles. The random match probabilities calculated for samples using INNULs were lower than with STRs when less than 14 STR alleles were reported. These results suggest that INNUL analysis may be well suited for low-template and/or degraded DNA samples, and may be used to supplement incomplete or failed STR analysis. Human identification using SNP analysis via MPS showed variable success with low-level post-blast samples in this study (<150pg). While neat DNA samples (6µL input as recommended) resulted in <50% of SNP calls, samples that were concentrated from 15µL to 6µL (15µL was added for STR and INNUL typing) resulted in more complete SNP profiles. Five out of six blood samples recovered from the wires attached to the pipe-bombs resulted in the correct ancestry predictions.


Asunto(s)
Bombas (Dispositivos Explosivos) , Dermatoglifia del ADN/métodos , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , ADN/aislamiento & purificación , Explosiones , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
17.
Int J Legal Med ; 131(1): 61-66, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27338932

RESUMEN

Formalin fixation is commonly used to preserve tissue sections for pathological testing and embalming cadavers for medical dissection or burial. DNA extracted from formalin-fixed tissues may also provide an alternative source of genetic material for medical diagnosis and forensic casework, such as identifying unknown embalmed human remains. Formaldehyde causes DNA damage, chemical modifications, and degradation, thereby reducing the quantity and quality of DNA available for downstream genetic analyses. By comparing the DNA yield, level of DNA degradation, and short tandem repeat (STR) success of various tissue types, this study is the first of its kind to provide some guidance on which samples from embalmed bodies are likely to generate more complete STR profiles. Tissue samples were dissected from three male embalmed cadavers and included bone, cartilage, hair, muscle, internal organs, skin, teeth, and nail clippings. DNA was purified from all samples using the QIAamp® FFPE Tissue Kit (Qiagen), quantified using the QuantiFiler® Trio DNA Quantification kit (Life Technologies), and genotyped using the GlobalFiler® PCR Amplification Kit (Life Technologies). Results of this study showed variation in DNA quantity and STR success between different types of tissues and some variation between cadavers. Overall, bone marrow samples resulted in the highest DNA yields, the least DNA degradation, and greatest STR success. However, several muscle, hair, and nail samples generated higher STR success rates than traditionally harvested bone and tooth samples. A key advantage to preferentially using these tissue samples over bone (and marrow) and teeth is their comparative ease and speed of collection from the cadaver and processing during DNA extraction. Results also indicate that soft tissues affected by lividity (blood pooling) may experience greater exposure to formalin, resulting in more DNA damage and reduced downstream STR success than tissues under compression. Overall, we recommend harvesting from selected muscles (gastrocnemius, rectus femoris, flexor digitorum brevis, masseter, brachioradialis) or fingernails for human identification purposes.


Asunto(s)
Dermatoglifia del ADN , ADN/análisis , Embalsamiento , Repeticiones de Microsatélite , Médula Ósea/química , Huesos/química , Cartílago/química , Degradación Necrótica del ADN , Fijadores , Formaldehído , Cabello/química , Humanos , Masculino , Músculo Esquelético/química , Uñas/química , Reacción en Cadena de la Polimerasa , Piel/química , Tendones/química , Diente/química
18.
Forensic Sci Int Genet ; 25: 182-190, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27631894

RESUMEN

One of the key features to be considered in a mass disaster is victim identification. However, the recovery and identification of human remains are sometimes complicated by harsh environmental conditions, limited facilities, loss of electricity and lack of refrigeration. If human remains cannot be collected, stored, or identified immediately, bodies decompose and DNA degrades making genotyping more difficult and ultimately decreasing DNA profiling success. In order to prevent further DNA damage and degradation after collection, tissue preservatives may be used. The goal of this study was to evaluate three customized (modified TENT, DESS, LST) and two commercial DNA preservatives (RNAlater and DNAgard®) on fresh and decomposed human skin and muscle samples stored in hot (35°C) and humid (60-70% relative humidity) conditions for up to three months. Skin and muscle samples were harvested from the thigh of three human cadavers placed outdoors for up to two weeks. In addition, the possibility of purifying DNA directly from the preservative solutions ("free DNA") was investigated in order to eliminate lengthy tissue digestion processes and increase throughput. The efficiency of each preservative was evaluated based on the quantity of DNA recovered from both the "free DNA" in solution and the tissue sample itself in conjunction with the quality and completeness of downstream STR profiles. As expected, DNA quantity and STR success decreased with time of decomposition. However, a marked decrease in DNA quantity and STR quality was observed in all samples after the bodies entered the bloat stage (approximately six days of decomposition in this study). Similar amounts of DNA were retrieved from skin and muscle samples over time, but slightly more complete STR profiles were obtained from muscle tissue. Although higher amounts of DNA were recovered from tissue samples than from the surrounding preservative, the average number of reportable alleles from the "free DNA" was comparable. Overall, DNAgard® and the modified TENT buffer were the most successful tissue preservatives tested in this study based on STR profile success from "free DNA" in solution when decomposing tissues were stored for up to three months in hot, humid conditions.


Asunto(s)
Dermatoglifia del ADN , ADN/análisis , Fijadores/química , Cambios Post Mortem , Conservación de Tejido/métodos , Genotipo , Calor , Humanos , Humedad , Músculo Esquelético/patología , Reacción en Cadena de la Polimerasa , Piel/patología , Manejo de Especímenes
19.
Sci Justice ; 56(1): 29-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26746823

RESUMEN

Advances in plant genomics have had an impact on the field of forensic botany. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. Five volunteers wore a jacket with Pinus echinata pollen-containing cotton swatches for a 14-day period. Pollen decay was evaluated at days 0, 3, 6, 9 and 14 by microscopy. Pollen grains were then transferred to slides using a portable forensic vacuum handle. Ten single grains per swatch were isolated for DNA analysis. DNA was extracted using a high throughput extraction method. A nine-locus short tandem repeat (STR) multiplex system, including previously published primers from Pinus taeda, was developed. DNA was amplified by PCR using fluorescent dyes and analyzed by capillary electrophoresis. Pollen counts from cotton swatches in a 14-day period exhibited an exponential decay from 100% to 17%. The success rate of PCR amplification was 81.2%. Complete and partial STR profiles were generated from 250 pollen grains analyzed (44% and 37%, respectively). Due to the limited amount of DNA, drop-in events were observed (1.87%). However, the rate of contamination with pollen from other pine individuals originating from environmental sources was 4.4%. In conclusion, this study has shown that pollen can be a stable source of forensic DNA evidence, as a proof-of-principle, and that may persist on cotton clothing for at least 14 days of wear. This method can be applied in forensic cases where pollen grains larger than 10 µm (e.g., from herbs or trees) may be transferred to clothing (worn by suspect or victim) by primary contact.


Asunto(s)
Vestuario , Dermatoglifia del ADN , ADN de Plantas/genética , Pinus/genética , Polen/genética , ADN de Plantas/aislamiento & purificación , Ciencias Forenses , Humanos , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa
20.
Int J Legal Med ; 130(3): 635-47, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26661945

RESUMEN

Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.


Asunto(s)
Cannabis/genética , Dermatoglifia del ADN , Sitios Genéticos , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa Multiplex , Marcadores Genéticos , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...